

DII-003-010407

Seat No.

M. Sc. (Sem. IV) (CBCS) Examination

May / June - 2015

C (PM) - 403: Chemistry of Materials - I

Faculty Code : 003 Subject Code : 010407

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instruction: All questions carry equal marks

- 1. Answer the following (Any Seven):
 - a. Define
 - i. Plastics
 - ii. Young' modulus
 - iii.Compliance
 - iv. Volume resistivity
 - b. Enlist common matrix and fiber materials.
 - c. State the principle of DSC and TGA.
 - d. Give an account of compounding.
 - e. Explain α , β , γ and δ relaxation transitions in some polymers.
 - f. State various techniques of assessment of thermal stability.
 - g. List the applications of the composites.
 - h. What are electrets? Also state the applications of the electrets.
 - i. Give an account of industrial fibers.
 - j. Give at least three examples each of natural and synthetic fibers and matrix materials.
- 2. Write note on following (Any Two):
 - a. Ceramic fibers
 - b. Dynamic mechanical behavior of polymers.
 - c. Contact electrification
 - d. Injection molding
- 3. Answer the following:
 - a. Discuss creep and recovery in Kevin-Voigt model.
 - b. Give an account of matched die molding, bag molding and closed molding method for producing PMCs.

OR

- 3. Answer the following:
 - a. Discuss the modification of the natural fibers.
 - b. Discuss the factors affecting mechanical properties of the polymers.
- 4. Answer the following:
 - a. Give an account of different types of optical properties.
 - b. Describe types of glass fibers.
 - c. Discuss different types of plastics.
- 5. Answer the following:
 - a. What are bio and molecular composites? Also give the classification of composites on the basis of the reinforcement.
 - b. Discuss TGA methods of multiple heating rates for the determination of kinetic parameters

OR

- b. Derive the Freeman-Anderson relation for the estimation of order of the reaction and energy of activation from a single heating rate DSC thermogram.
- c. A unidirectional glass-epoxy composite has a fiber volume fraction of 60%. Calculate the density, modulus and thermal conductivity of the composite using following data:

Component	ρ, kgm ⁻³	E, GPa	K, Wm ⁻¹ K
Ероху	1250	6.01	0.25
Glass fiber	2540	80.0	1.05